

Effective Radius of Cloud Droplets Derived from Ground-Based Remote Sensing at the ARM SGP and NSA sites

Byung-Gon Kim¹, Stephen E. Schwartz¹, Mark A. Miller¹, and Qilong Min²

Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 (bgkim@bnl.gov)

²Atmospheric Science Research Center, State University of New York at Albany, 251 Fuller Road, Albany NY, 12203

Introduction

- Enhanced cloud drop concentrations may be expected to increase cloud optical depth and reflectivity, reduce absorption of solar radiation, and produce a cooling effect (Twomey, 1977).
- Recently, aerosol enhancement of cloud optical depth and albedo was demonstrated using satellite data and chemical transport model (Schwartz et al., PNAS, 2002)
- Surface remote sensing has the advantage of continuous operation over long periods and can examine long-term trends in aerosol properties.
- Here, we examine cloud drop effective radius (r_e) and investigate its relationship to aerosol concentration / meteorological conditions using ARM data for the year 2000.
- * U.S. DOE's ARM program
- > Conducting continuous and integrated measurements of radiation, cloud and aerosol properties at SGP & NSA sites.
- Cloud optical depth and liquid water path (LWP) are retrieved from remote sensing and r_e is derived from the surface by remote sensing.

Case Selection & Data Retrieval

Required Conditions

- Complete overcast needed for the determination of τ by using MultiFilter Rotating Shadowband Radiometer (MFRSR)
- Low level liquid water clouds without overlying cloud - Clouds in boundary layer to be related to aerosol at the surface.

 $LWP = \frac{2}{2} \rho_w \tau_c < r_e >$

and surface albedo (Min and Harrison, GRL, 1996).

4. Cloud liquid water path (LWP) measured by a microwave radiometer (MWR) used to obtain effective radius (r_e) of cloud droplets.

1. Low-level and thin cloud layer selected

and not interfered by higher-level ice

2. Completely overcast cloudy situations

screened using shaded and unshaded

3. Cloud optical depth (τ) obtained using

the observed atmospheric transmittance,

irradiances measured by pyranometers

Southern Great

Microwave Radiometer (MWR,) Nephelomete

Effective radius can be determined by slope of plot of τ vs. LWP.

- Scatterplots of optical depth against LWP show wide variation on selected days.
- The wide variation in both is an inherent property of clouds.
- τ exhibited a roughly linear dependence on LWP (Schwartz et al., PNAS, 2002) with slopes that varied from day to day.

Testing for Aerosol Influence on Cloud Drop Effective Radius

- τ and LWP exhibited similar fluctuation, as expected.
- On 13 Apr at 15UTC, τ and LWP increased substantially, but re remained unchanged.
- On 26 Oct at 15-18 UTC, re increased from 8-9µm to 12-13 μ m but aerosol scattering coefficient σ_{sp} remained relatively constant
- Scatterplot of σ_{sp} vs. r_e for the entire data set showed little indication of correlation.
- σ_{sp} at NSA (0.5-8.4Mm⁻¹) lower than at SGP (17.9-110.8 Mm¹) showed wide variations, but exhibited slight negative correlation with r_e .

Meteorological Forcing on Effective Radius

- Inversion strength: stability above the Mixed Layer (ML)
- ML height, ML potential temperature, etc.
- Only inversion strength could be weakly correlated ($r^2 = 0.68$) with r_e .

Stronger stability associated with larger r_e .

- Stability possibly suppressing the updraft, less supersaturation, and fewer cloud drops
- Moisture exchange in association with vertical entrainment

Re (μm)

Inversion Strength $\Delta \theta = \theta_{TMI}^{1km}$

Vertical Decoupling

If cloud layer existed above the ML such as 03/15 and 10/06, the aerosol property at the surface may be different from that of the cloud layer. It could decrease correlation of aerosol and cloud drop radius

Summary and Future Work

- τ exhibited a roughly linear dependence on LWP, indicating fairly constant r_e on any given day.
- re varied significantly from day to day.
- No significant evidence of aerosol influence on r_e .
- Results suggest stability could be a controlling factor on r_e , and supporting analyses for stability influence is needed.
- Correction of LWP is required for clouds perturbed by drizzle.

Acknowledgment

This work was supported in part by US DOE's ARM program. B.-G. Kim was supported in part by Korean Science and Engineering Foundation and National Institue of Environmental Research, Korea.